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Abstract We say that a solution q of a partial differential equation in WO real variables 
zl, 2 2  is fwcfionolly separable in these variables if X'(z,,zz) = + ( A ( q )  + B(z2)) 
for single variable functions 0, A ,  B such that +'AIB' # 0. In this paper we classify 
all possibilities for regular functional separation in local coordinates for equations of 
the form A2X' = f[X',zt, q) where A2 is the Laplace-Bdtrami operator on a two- 
dimensional Riemannian or pseudo-Riemannian space. If the dependence of f on z l ,  2 2  
is non-trivial then separation can occur for conformal Cartesian coordinates on any space. 
If f = G(Q) then for orthogonal coordinates we find that true functional separation, i.e. 
separation other than additive or multiplicative, occurs precisely for Cartesian coordinates 
in the Euclidean and pseudo-Euclidean planes. (The sineGordon equation provides an 
example of this separation.) For many of these cases the separated solutions A ,  B 
can be expressed in terms of elliptic functions. For non-mhogonal coordinates and 
f = G( X') true functional separation occurs precisely for Cartesian m n l i n a t s  in the 
pseudo-Euclidean plane and for a coordinate system on the hyperboloid of one sheet. a 
pseudo-Riemannian space of constant cuwature 

,, 
3, 

1. Introduction 

Our aim is to construct explicit closed-form solutions of interesting partial differential 
equations (PDES). The approach we follow is to use a generalization of the classical 
method of separation of variables to reduce the original PDE to a system of ordinary 
differential equations that we can then attempt to solve. We say that a solution Q' 
of a partial differential equation in two real variables zl, z2 is functional& separable 
in these variables if q(zl ,z2) = 4 ( A ( z , )  + B(z,)) for single variable functions 
+ , A , B  such that 4'A'B' f 0, 11-31, If 4' is a constant this corresponds to 
additive separation of variables; if .$(U) = e" it corresponds to multiplicative variable 
separation. In this paper we classify all possibilities for regular functional separation 
in local coordinates for equations of the form A,* = f ( q ,  z lr  z2)  where A, is the 
Laplace-Beltrami operator on a two-dimensional Riemannian or pseudo-Riemannian 
space. If the dependence of f on z1,z2 is non-trivial we show that (depending 
on the form of f) separation can occur for conformal Cartesian coordinates on any 
space. If f = G(Q)  then for orthogonal coordinates we find that true functional 
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separation, i.e. separation other than additive or multiplicative, occurs precisely for 
Cartesian coordinates in the Euclidean and pseudo-Euclidean planes. (The sine- 
Gordon equation provides an example of this separation.) For many of these cases 
the separated solutions A, B are expressible in terms of elliptic functions For non- 
orthogonal coordinates and f = G(@) true functional separation occurs precisely for 
Cartesian coordinates in the pseudo-Euclidean plane and for a coordinate system on 
the hyperboloid of one sheet, a pseudo-Riemannian space of mnstant curvature. 

W Miller and L A Rubel 

2. Functional separation for - = f( @, t ,  z )  

For our first important example we look for solutions of the equation 

in the form 'Y( t ,z)  = #(U),(. = A(t )  + B(I)). We shall assume that 4' # 0 and 
that all functions are infinitely differentiable. Clearly, functional separation of (2.1) 
is equivalent to additive separation of the modified equation 

@*t-*'rr=f(@I! , t ,+)  (21) 

U** - Uz3  + N(u)(u:  - U:) = h!(U,t,,I) 
N ( U )  = 4"/4' 

(2.2) 
W U , f > + )  = f(4,hz)/4'. 

Thus, we look for solutions U of (2.2) such that utr = 0. 
A set of necessary and sufficient conditions for additive separation of a PDE was 

worked out by Kalnins and Miller [#I. We give a brief review of this theory and 
apply it to our example. Suppose we look for additively separable solutions of the 
partial differential equation 

in the n coordinates I;. (Here, ui = a,.~,  uii = a z , 5 ,  U, . . ., and ui j  = 0 for 
i # j.) We look for solutions of the form 

H(z i ,  U ,  q, uiir u i i i , .  . .) = 0 l < i < T l  (2.3) 

Introducing new notation, let 

let mi be the largest integer 
differentiation operator 

ujJ z U< = j = 1,2 , .  .. 
such that 8u,,t H = H-,,< $ 0  and let Di be the total 

Di = 8s. f UiJ% + ui,za..,, + ' ' _  + U i , n , + l  a U,,,, +.. . .  

Ui,m.+l = -DiHIHu.,m, i = 1 , 2  (..., T l ,  (2.4) 

Di = 8,. + ui,lau + ~ i , z a u , , ,  + ' ' ' + ~i ,m,au. , , , -~ .  

Then the equation D; H( I,  U) = 0 implies 

where 

It follows that U satisfies the integrability conditions 0, = 0 , j  # i, or 
Hu,,m,Hu,,nj(Di'jH) + Hu 0.,,U,,"L; ( D C ~ ) ( D j  H) 

(2.5) - - H " ~ , * ; ( D ~ H ) ( D ~ ~ ~ , , ~ , )  + H, ( ~ j ~ ) ( ~ i ~ u > , ~ , l .  1,m, 

Conversely we have the result: 
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Theorem 1 [U]. If conditions (2.5) are satisfied identically (for i # j and modulo 
the requirement H = 0) in the dependent variables u . u k , ( ,  then the PDE H = 0 
admits a Cy=l m; parameter family of separable solutions. Indeed, for evely set of 
ml + m2 + . . . + mR + 1 constants {U", subject to the condition H ( z u ,  vu) = 0 
with H,,j,,,(z",v") # 0, there is a unique separable solution U of H( r ,  U )  = 0 such 
that u(r0)  = U", ui , , ( zu )  = vu, u ; , ~ ( z " )  = u:,~, 1 < i < n, 1 < j < mi. 

If, for a particular coordinate system zi ,  equations (2.5) are satisfied identically 
modulo H = 0 we say that these coordinates permit regular separation. If equations 
(2.5) are not satisfied identically, separable solutions still may exist but will depend 
on fewer than E:=, mi independent parameters. This is non-regular separation. We 
shall restrict our attention to regular separation. 

Now we return to our example (22) .  Fbr ease of calculation we shall initially 
limit ourselves to the case M = M ( u ) ,  i.e. f t  = f, = 0. Differentiating (2.2) with 
respect to t we find 

uttt = -N'u t (u ; -  U : )  - 2 N u , u , ,  + M ' u t .  (2.6) 

For an additively separable solution we must have ut t t z  = 0. Differentiating (2.6) 
with respect to z and using (22 )  to eliminate the terms in 7~~~ and U,,  we obtain 
the necessary condition 

(u:ut - u : u Z ) ( N " - 2 N ' N )  + u , u t ( M " - 2 N ' M )  = O .  

This condition is satisfied identically if and only if the separation conditions 

(i) N " - 2 N ' N = O  (ii) M f t - 2 N ' M = O  (2 .3  

hold. By theorem 1, conditions (27) are necessary and sufficient for regular separation 
of equation (2.2). p h e  corresponding computation for U=,= leads to exactly the 
same conditions, as, by symmetry, it must.) Note that condition (i) admits the first 
integral N' = N Z  + c2 for c a constant, so we can compute N from an additional 
integration. Moreover, if N is a solution of (i) then 111 = N is a solution of (ii). 
Setting M = N P  in (3) we thus obtain the firstader ordinary differential equation 
P' = t N - 2  for P, where 

The solutions are of four types: 
(i) c # 0, N' # 0 

is a constant. 

N = c tanw 

e-i04(u) = tan w + sec w 

A4 = k,tanw + k,[wtanw + 11 UI = c 7 ~ +  6 

(ii) c = 0, N' # 0 

N = - I / ( u + b )  M = c ~ ( u + ~ ) ~ + c ~ / ( u + ~ )  

$ ( U )  = k h ( u  + 6)  f(4) = kclec"Ik + kc,e-24'/" 
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0, N = ic # 0 (iu) N' 

M = cIu+c, +(U) = eiCu+& f ( 4 )  = c 1 4 l n 4 + ( i c c , - h ) 4  

(iv) N' 0, N 0 

M = C I U  f % +(U) = cu f(4) = C C , 4  + C%. 

In each case we have set an additive constant equal to zero in the expression for 

For each of these cases the separated solutions U = A ( t ) +  B(x) can be obtained 
by solving ordinary differential equations. Indeed the mechanism for separation is 
a generalized differential Sackel form [6,7l, a non-trivial extension of the classical 
Sackel form [S,9]. In case (U) the basic separation equations are 

+(U) .  

(A')' = u t  = a A 2  -t P A  f y +2clA3 

(B')' = U: = aB' - PB+ y -2clB3 f c2 

(2.W 

(2.86) 

with two additional separation equations 

obtained by differentiating equation (ZSa) with respect to 1 and (2.86) with respect 
to I and cancelling the common factors 2A', 2B'. (Here for simplicity we have set 
b = 0.) The constants a, 0, 7, c1 and o, are separation parameters. We observe that 

1 1 (2.2) = (2.8c) - (2.84 - -(2.8a) + -(2.8b) 
U U 

so a solution U = A(1) + B ( s )  of (2.&), (286) necessarily satisfies (2.2). Note 
that for general values of a, p,  7, cl,  o, the problem of finding functionally separable 
solutions has been reduced to quadratures and inversion, i.e. to the problem of 
evaluating integrals of the form 

dA A 

= 1 d a A Z +  PA f y + 2c,A3 

and solving for A as a function of b .  It is well known for these integrals that A, B are 
elliptic functions [lo, ch MI, section 51. (The possible explicit solutions for the wave 
equation in Cartesian coordinates ( f  0) are given in [2, p 1261.) Furthermore, for 
fixed f the separated solution depends on four independent parameters, in agreement 
with the prediction of theorem 1. We see that the Sackel matrix associated with this 
separation is 

A' A 1 2 ~ 3  

B -; 0 -3B' 0 
(2.9) 
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(We make a brief digression to recall the meaning of Stickel matrices and StBckel 
form [S, 91. We consider a classical example: orthogonal separation for the Hamilton- 
Jacobi equation for a free particle on an ndimensional Riemannian space 

i=l 

Here the metric, expressed in terms of the local orthogonal coordinates { z i } ,  is 

n 

ds2  = H:(d+')'. 
i=l 

Assume additive separation so that a,., = aj,a,u = 0 for i # j .  We determine 
conditions such that any solution of the separabon equations 

u f + C s j j ( z ' ) x j  = o  i = l ,  ..., n A '  = - E  
j = 1  

is automatically a separable solution of the Hamilton-Jacobi equation. Here 
aks i j ( z i )  = 0 for IC # i and det(sij)  + 0 so that the separation equations are 
ordinary differential equations. The constants AJ are called separation parameters. 
We say that S = ( s i j )  is a Stackel matrix in the sense that the ith row of S depends 
only on the variable xi. Now it is not difficult to show that the Hamilton-Jacobi 
equation can be recovered from the separation equations if and only if the metric 
coefficients can be expressed in the form H;' = ( S - ' ) " .  If this is the case the 
metric coefficients are said m be in Stackel form with respect to these coordinates. 
Similar constructions work for second-order linear differential equations, such as the 
Schriidinger equation. For the generalized differential Stackel form the construction 
of the original PDE from the (non-singular) Sackel matrix is analogous except that 
now more than one row may depend on the variable xi and the elements of the 
matrix may be functions of the dependent variables such as tii, in addition to the 
explicit functions of the independent variables x' which is allowed for classical Stickel 
matrices.) 

Case (i) is similar. If we write U = A ( t )  + B(z) in place of cu + b we find the 
basic separation equations 

(A' )2  = uf = aeZiA + p +ye-"' + ( c k l / 2 n )  + (ek2/2a)A (2100) 

( B ' ) Z  = U: = -ae-zB + p-  yeZiB - ( c k 2 / 2 n ) ~  

A" = u t t  = iaezA - iye-'jA + ( c k 2 / 4 a )  

B" = uzc = - irezB - ( c k 2 / 4 n )  (2.1od) 

(2 106) 

with two additional separation equations 

(2-104 

obtained by differentiating equation (2.lOa) with respect to t and (2106) with respect 
to x and cancelling the " n o n  factors 2A', 2B'. Cases (iii) and (iv) are even 
simpler. For general values of a , p , r , c l , q  the problem of finding functionally 
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separable solutions has been reduced to quadratures and inversion, i.e. to the problem 
of evaluating integrals of the form 

W MiIler and L A Rubel 

dA A 

= 1 JaeZiA f p f ye-Zi.4 f kA 

and solving for A as a function oft. For many special cases A, B can be expressed 
in terms of elliptic functions, but for general values of the parameters with a p k  # 0 
these functions have not been tabulated. (Note that for kz = 0 the type (i) equation 
(21) is the sineGordon equation [2,11,12 (section 5.2), 131 and equations (2.1&2,6) 
can be integrated explicitly.) 

It is easy to modify the derivation of the separation conditions for (22) in the 
case where not both f,, f, vanish. The separation conditions (27) then become 

(1)  N"-2N'N = 0 (2) Mu, -2N'M = 0 (3) M,,  = Mu* = M,,  = 0. 

(211) 

If NI # 0 then conditions (2) and (3) imply that f, = f, = 0, which is contrary to 
our assumption. It follows easily that only solutions of types (3) and (4) listed above 
can occur in this case. The solutions given for these types are still valid except that 
now + = g ( i )  f h(+) where g and h are arbitrary functions. 

Next we consider an example with very different behaviour: equation (2.1) 
expressed in the non-orthogonal Cartesian coordinates s , y  where i = s + y, 
+ = s - y. Then the equation becomes 

@"v = F(*,s,y) 
and we seek solutions of the form @(s,y) = 4(7~) ,  71 = A($) f B(y). This is 
equivalent to additive separation of the modified equation 

uauy = M(u, s ,Y)  M(u,s ,Y)  = F ( ~ , s , Y ) / + " .  (212) 

(Here, we are assuming that F # 0. If F = 0 then the only regular separable 
solution is +(U) = a u t  6.) We initially limit ourselves to the case M = M ( u ) ,  i.e. 
F, = FY = 0. Differentiating (2.12) we find 

U,, = M'(u*/u,)  uyy = M'(Uy/U*). (213) 

Then the requirement ubsy = 0 together with (2.12) and (2.13) implies the necessary 
and sufficient condition for regular separation 

M"M - ( M y  = 0. (214) 

The solution is M ( u )  = aeku. The possible functions 4 ( u )  are the solutions of the 
ordinaly differential equation 

I k v  4" = a- e- F ( 4 ) .  

The separation equations are 

- aekA + CA' = o B' - cekB = o 
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and can be solved explicitly. Here c is the separation parameter. For fixed M 
the separable solutions of (2.11) have two independent parameters, as predicted by 
theorem 1. (See [l, p 6921 for the explicit solution of the sineGordon equation 
@ a y  = sin V! by this method.) 

If F depends on the variables s,y, the necessary and sufficient conditions for 
separation are 

M , , M Z  - M : M  t M,,,M - M , M ,  = 0 
(215) 

M , , M - M , M , = O  M , , M - M , M , = O .  

These conditions imply that M = P(u)Z(s ,y)  where 

(In P)" = aP-1 (In = -aZ 

and U is a constant. Thus F ( + , s , y )  = C(+)Z(s,y) and $(U) is obtained 
by solving the ordinary differential equation 4'' = G(d)/P(u) .  For a = 0 
a change of variables of the form S ( s ) , Y ( y )  reduces the problem to (2.14). 
For a # 0 the equation for 2 is the Liouville equation with general solution 
Z = -(2/u)Sf(s)Yf(y)/(S(s) + Y(y)), for arbitraiy functions S, Y, [14,15 p 601. 
With an obvious change of variables, preserving the separation, we have Z ( s ,  y) = 
- (2/a) / (s+ y),. Furthermore the equation for P has the general solution P ( u )  = 
( a /2k2)coshZk(~  + b) and the envelope solution P(u) = -(a/2)u2. For the 
generalsolutionwe have U = +(21c)-11n~(ay-P)(ysf6)/(-yy+6)(astP)I-b. 
For the envelope solution we find U = (ay-P6)(s t  y)/(ys+ 6)(-yyf6). Here, 
a6 - Py # 0. In each case for fixed M there are two independent parameten in the 
expression for U. 

3. Functional separation for pseudo-Riemannian spaces 

lb generalize the first example of section 2 we search for solutions of the equation 

A z 4 ( ~ )  = f(4(u),zi ,+z) (3.1) 

such that U = A(z , )  f E(+,) where zl,zz is an orthogonal coordinate system in 
a pseudo-Riemannian space, ie. with signature (+I, -1). Here A, is the Laplace 
Beltrami operator [E] 

where 

(3.3) 

and the metric for the pseudoRiemannian space is given (in terms of the local 
coordinates zl,  z2) by 

ds2 = H ~ ( z l , z 2 ) d z : +  H ~ ( z l , z 2 ) d z : .  
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It follows that we must determine additively separable solutions for the equation 

W Miller and L A Rubel 

N l u )  = 4"/@ 
According to theorem 1 we must compute ulI1 and in terms of lower-order 
derivatives and then use (3.4) and the requirement ullIz = 0 to obtain a polynomial 
identity in u , q ,  uZ,up .  This computation is tedious but straightforward. 

Initially, we require that N # 0. Equating the coefficients of the term uZuz 
we find the condition (H;' - H;z)t31(ln H: /H; )N  = 0. Due to the signature 
requirement on the metric the iirst factor cannot vanish. Thus a1(h H 2 / H z )  - 0, 
which implies h,  = 0. By symmetry it follows that h, = 0 also. Thus Ht/ H i = ;  is 
a constant and negative because of the signature requirement. By suitable rescaling 
of the coordinates we can obtain H: = - H i  = p(zl,zz). 

Now, multiplying both sides of (3.4) by p(sl ,z2) and making the identifications 
I, = t, z2 = I, .&'(U,I,,I~) = p ( z l , z Z ) f ( ~ , + , , s z ) / ~ '  we obtain equation (22) 
again. Thus the analysis of thii example in section 2 completely resolves our more 
general problem in the case N # 0. Indeed, if N'f # 0 then pf = G(+), the 
coordinates are conformal to Cartesian coordinates in the peudo-Euclidean plane 
and the solutions are of types (1) and (2) given in section 2. If f = 0 the coordinates 
are again conformally Cartesian and the possibilities for N and 6 correspond to types 
(1) and (2) given in section 2 

If N' = 0 but N f  f 0 then either pf = G(6) and we have the type (3) 
solutions of section 2, or pf = G(4)[g(1,) + h(s,) f s] where g f h is non- 
constant. For this latter possibility we must have c, = 0 in the type (3) solutions; 
these solutions correspond to multiplicative separation of the Schrtidinger equation 
A,* - VIU = XIU where V = [g(zl) + h(zz)]/p(z1,zz) is a separable potential. 
The general theory for such solutions is discussed in [17, ch I], for example. 

If N' = f = 0 but N # 0 then we must have c,  = cz = 0 in the type (3) 
solutions. These solutions correspond to multiplicative separation of the Laplace 
equation AzT! = 0. 

Now suppose that N = 0. Then by equating the coefficients of the term tia in 
the separation conditions we obtain the requirement 

M ( ~ , ~ I , I z )  = f(4*1i,zz)/4'. 

aIz In( H:/ H i )  = 0. P.5) 
'hiis means that by replacing our coordinates with suitably renormalized coordinates 
Xl(zl),X2(zz), if necessary, (this preserves functional separation) we can obtain the 
metric coefficients in the form H i ( z l , z 2 )  = - H : ( z l , s 2 )  = p(xl,xz), with respect 
to the new coordinates zt,x2. Now, multiplying both sides of (3.4) by the factor 
p ( z l , T 2 )  and noticing that h,  = h, = 0, we obtain (2.2) with t = s1, I = I,, N = 0 
and M(u, t ,+)  =p(f ,x) f (+ , t , z ) /@.  I fhf  # t i t  followsfrom (2.11)and thetype 
(4) solutions of section 2 that either pf = C(d), (M' # O), or pf = g ( t ) + h ( x ) + i  
where g + h is variable. These latter solutions correspond to additive separation of 
the equation AzIU - VIU = X where V = [g( i l )  + ~ ( I ~ ) ] / ~ ( I , , I ~ )  is a separable 
potential. The general theory for such solutions in n variables b treated in [6,9 

If N = M = 0 we obtain the special case of the type (4) solutions of section 
2 with f = 0. These solutions correspond to additive separation of the Laplace 
equation A,Q = 0. 
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Theorem 2. The equation 

Az+(u) = ~ ( + ( U ) , Z I , ~  

where A2 is the Laplace-Beltrami operator on a pseudo-Riemannian space with 
signature (+l,-1) admits (regular) solutions such that U = A(r, )  + B(r,) in a 
local orthogonal coordinate system q, z2 for some function + with +' # 0 under the 
following circumstances. (Here, N(u) = @'/+', N' = N 2  + C? for c a constant, 
M ( u )  = f(+)/+' and ds2 is the metric on the pseudo-Riemannian space.) In all 
cases the coordinates are conformally Cartesian: ds2 = p(r1,z2)(dz: - dz:). 
(1) For c #  0, N' # 0 

N = c t a n w  M = k,tanw + kz[wtanw+ 11 w = cu + b 

e - i ~ 4 ( ~ )  = tan w + sec w 

(2) For c = 0, " # 0 

+(U) = kln(u + b) p ( ~ ~ , ~ ~ ) f ( + )  = kc1e4Ik + kc,e-'"/". 

(3) For N = ic # 0, M' # 0 

M = clu + cz +(U) = P ( ~ , E Z ) ~ ( + )  = c ,+ In++  (ice, - &)+. 

(4) For N = ic + 0, 11.1' = 0 

p(Zl,r2)f(+)  = iccz+[g(zl) + h(r2)  + X/ic%I. M = c 2  + ( u ) = e  i cutk  

Strickel form coordinates provide multiplicative separation of the Schrodinger 
equation A,* - V Q  = A @  on the pseudo-Riemannian space where V = 
icc2[g(z,) + h(z,) ] /p(z, , r , )  is a separable potential. 
(5) For N =0, M ' #  0 

A4 = c ,u+  cz $(U) = cu P ( Z l , Z 2 ) f ( + )  = eel$+ ccz. 

(6) For N = M ' =  0 

= C2 +(U) = cu P(%zz)f(d4 = cc* l s (q )  t Nz2) + A/CCZl. 

(Here, g + h is non-constant.) Stackel form coordinates provide additive separation 
of the equation A,* - V Q  = X on the pseudo-Riemannian space where V = 
c%[g(cl) + h(z2)] /p(z l ,c2)  is a separable potential. 
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The type (4), (6) multiplicative and additive separations have been studied in detail 
for several manifolds [18-21]. It is known that, for pseudo-Euclidean space, separation 
is possible in ten coordinate systems whereas for the single-sheeted hyperboloid it is 
possible in nine coordinate systems. 

Next we search for solutions of the equation 

Az4(u) = .f(4(u),z19zz) (3.6) 
such that U = A ( $ , )  + B ( z 2 )  where zl ,z2 is a non-orthogonal coordinate system in 
a pseudo-Riemannian space. Here A, is the Laplace-Beltrami operator 

where the metric for the pseudo-Riemannian space is given (in terms of the local 
coordinates zl, z2) by 

d s 2 = g i i ( z i ~ z 2 ) d ~ ?  +2g12(~1,~2)d~1d+,+~a(~i,~2)d~: 912 =gzi. 

The non-orthogonality requirement is that g12 # 0. 

equation 

g1'ull t 

It follows that we must determine (additively) regular separable solutions for the 

+ h l u l f  h2u2 + N(u)(g"uf + 2g121111+ + gnu:) 

= M ( u ,  =1,zz) (3.7) 
N ( u )  = 4"/4' M(u,z1,+2) = f(4,z1,z2)/4' 
where here 

The case N = 0, ie. +( U) = U, is degenerate in this problem so we require N # 0. 
The analysis is similar to the proof of theorem 2. According to theorem 1 we must 
compute ulll and un2 in terms of lower-order derivatives and then use (3.4) and 
the requirement ulIl2 = 0 to obtain a polynomial identity in u,uI ,u2 ,uz .  This 
computation is tedious but straightfoward. First we assume g"gn f 0. Then 
equating coefficients of U& in the identity we find N = 0, a contradiction. If we 
assume g" # 0, ga = 0 and equate coefficients of u17~27~z we find again that 
N = 0, another contradiction. By symmetry, ga # 0, giL = 0 is also impossible. 
Thus the only remaining possibility is g" = ga = 0. Setting gi2 = p - l ( z l , z , )  we 
can write (3.7) in the simple form 

This is just equation (2.12) with the identifications xl  = s, zz = y, &f(u,s,y) = 
p(s,y)f(+,s,y)/4".  It follows from the analysis of (212) that there are two types 
of solution. For the first type we can assume pf = G( 4)  and the solutions are given 
following (214). (Here the coordinates are conformal to Cartesian coordinates.) 
For the second type we can assume p f = G(+)(s + Y)-~ and the solutions are 
given following (2.15). (Here the coordinates are conformal to coordinates on the 
one-sheeted hyperboloid, a space of constant cuwature 118-201. Explicitly, if dSz = 
d s d y / ( s + y ) Z  thensetting z I =  ( s y + 1 ) / 2 ( s + y ) , z 2 =  ( 8 - y ) / 2 ( s + y ) , z 3 =  
(sy - 1)/2(s + y) we find z: 4- 2: - 23' = 

%% = (f(4, z , ,zz ) / (4" ) )P($ l ,z , ) .  (3.8) 

and dSz = -dzi - dzi + dz:.) 
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Theorem 3. The equation 

A,4(u) = f(dJ(U),.i..,) 

admits (regular) solutions such that U = A ( z , )  4- B(z,) and 4'' f: 0 in a local 
non-orthogonal coordinate system I,, x, on a pseudo-Riemannian space in precisely 
two cases: 

(1) the coordinates are conformal to Cartesian coordinates in the pseudo- 
Euclidean plane ds2 = p ( z l ,  +,) dzl  dz,, p f = C(+); 

(2) the coordinates ds2 = p ( q , + z ) ( d ~ i  dz2/(q++z)z) ,  Pf = G(+)/(~+*Z)'  
are conformal to coordinates d i2  = (dzi dx2/(zi  + z,)') on the hyperboloid of one 
sheet. 

4. Functional separation for Riemannian spaces 

Now we seek solutions of the equation 

A d U )  = f(4(.),.17.2) (4.1) 

such that U = A ( z , )  + B(z2 )  where zl,z2 is an orthogonal coordinate system in a 
Riemannian space, ie. with signature (+l,+l). Again A, is the Laplace-Beltrami 
operator (3.2). It follow that we must determine additively separable solutions for 
the equation (3.4). The computations here are almost identical with those used in 
the proof of theorem 2. The only difference is that here we require that H: and H l  
are pi t ive ,  whereas in section 3 H:Hl was negative. 

The result is as follows. 

Theorem 4. The equation 

A,4(u) = f (4(u) , . l>%)  

where A, is the Laplace-Beltrami operator on a Riemannian space admits (regular) 
solutions such that U = A(zl)  + B(z,) in a local orthogonal coordinate system 
z i ,  z2 for some function 4 with 4' # 0 under the following circumstances. (Here, 
N(u )  = +"/@, N' = N Z  + 2 for c a constant, M ( u )  = f(+,z,,z,)/+' and dsZ 
is the metric on the Riemannian space.) In all cases the coordinates are conformally 
Cartesian: ds2 = p(zl,z2)(dzf + dzz).  

N = ctanw 

(1) For c # 0, N' # 0 

M = k,tanw 4- k,[wtanw+ 11 w = c u + b  

e-ia+(u) = tan w + sec w 

(2) For c = 0, NI # 0 
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(3) For N = ic # 0, A4' # 0 

(4) For N = ic # 0, M' = 0 
M = cIu + c2 

M = c2 

4(u) = 

$(U) = eieutk 

~ ( z l ~ z ~ ) f ( & )  = c l & h & +  (iccz - h ) 4 .  

~ ( + ~ , z ~ ) f ( 4 )  = iccz4[g(zI) + h ( z z )  + A/icc21. 
Stfickel form mrdinates provide multiplicative separation of the Schr6dinger 
equation A,* - V q  = A @  on the Riemannian space where V = iccz[g(zi) + 
h(zz ) ] /p (z l ,  zz) is a separable potential. 

( 5 ) F o r N = O , M ' # O  

(6) For N = M ' =  0 
M = c1'IL + e2 

+(U) = cu 

+(U) = CU p(z, ,z,)f(4) = C C l 4  t cc2. 

M = CZ P(+l,zz)f(+) = CDLb(+l) t h(z2)  + X/CCzl .  

(Here, g + h is nonconstant.) Stackel form coordinates provide additive separation 
of the equation A,@ - V @  = X on the Riemannian space where 1' = cc2[g(xl) + 
h(zz)]/p(zl, z2) is a separable potential. 

In case (1) the basic separation equations are 
( A')z = U: = aeZiA + p + ye-ZiA + (cki/2a) + (ck2/2a)A 

- (B')* = -u2 2 - -  - ae-2iB t j3 - yeZiB - ( ck2/2a) B 

A" = ull = iaeZiA - iye-zA + ck2/4a 
with two additional separation equations 

- ~ f f  = - - iae-2iB - i y e 2 i B / c k q a  
9.2 - 

In case (3) the basic separation equations are 
(A')z= 
- (B')z = 

= o l ~ 2  + PA + -, t 2 c i ~ 3  

= a~~ - P B  t - 2c1 ~3 + c2 

with the two additional separation equations 
A" = ull = a A  + P/2 + 3ciA2 

- B" = -U= = a B - P / 2 - 3 c 1 B 2 .  
As an example of the possible functionally separable explicit solutions of the 

Laplace equation U =,=, t uIlPt = 0 via this method see 12, p 1171. 
The type (4), (6) multiplicative and additive separations have been studied in 

detail for constant cuwature manifolds [18-21]. It is known that, for Euclidean space, 
separation is possible in four coordinate systems whereas for the double-sheeted 
hyperboloid it is possible in nine coordinate systems and for the sphere it is possible 
in two mordinate systems. 

From the proof of theorem 3 we see that functional separation in non-orthogonal 
variables occurs only if g" = g" = 0. This is not possible for coordinates in a 
Riemannian space. 

Theorem 5. The equation 

in a local non-orthogonal coordinate system zl ,z2 on a Riemannian space admits no 
regular separable solutions U = A(el) + B ( z 2 )  with 4" # 0. 

A z @ ( U )  = f('$('J), Ti ,  22)  
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