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Functional separation of variables for Laplace equations in
two dimensions

W Miller, Jri§ and Lee A Rubeli}|

t School of Mathematics, and Institute for Mathematics and its Applications, University
of Minnesota, Minneapolis, MN 55455, USA
1 Department of Mathematics, University of Iilinois, Urbana, IL 61801, USA

. Received 7 September 1992, in final form 4 January 1993

Abstract. We say that a solution W of a partial differential equation in two real variables
Ty, &3 is functionally separable in these variables if ¥(zy, z3) = ¢ (A(z) + B(xa))
for single variable functions ¢, A, B such that ¢’A’B’ # 0. In this paper we classify
all possibilities for regular functional separation in local coordinates for equations of
the form A,V = f{¥,zy, 2) where Az is the Laplace-Beltrami operator on a two-
dimensional Riemannian or pseudo-Riemannian space. If the dependence of f on 3, z3
is non-trivial then separation can occur for conformal Cartesian coordinates on any space.
If f = G(¥) then for crthogonal coordinates we find that true functional separation, i.e.
separation other than additive or multiplicative, accurs precisely for Cartesian coordinates
in the Euclidean and pseudo-Euclidean planes. (The sine-Gordon equation provides an
example of this separation.) For many of these cases the separated solutions 4, B
can be expressed in terms of elliptic functions. For non-orthogonal coordinates and
f = G(¥) true functional separation occurs precisely for Cartesian coordinates in the
pseudo-Euclidean plane and for a coordinate system on the hyperboloid of one sheet, a
pseudo-Riemannian space of constant curvature.

1. Introduction

Our aim is to construct explicit closed-form solutions of interesting partial differential
equations (PDEs). The approach we follow is to use a generalization of the classical
method of separation of variables to reduce the original PDE to a system of ordinary
differential equations that we can then attempt to solve. We say that a solution ¥
of a partial differential equation in two real variables x,, x, is functionally separable
in these variables if ¥(z,,z,) = ¢(A(x,) + B(z,)) for single variable functions
¢, A, B such that ¢'A'B’ # 0, [1-3]. If ¢ is a constant this corresponds to
additive separation of variables; if ¢(u) = e* it corresponds to multiplicative variable
separation. In this paper we classify all possibilities for regular functional separation
in local coordinates for equations of the form A, ¥ = f(¥,z,,x,) where A, is the
Laplace—Beltrami operator on a two-dimensional Riemannian or pseudo-Riemannian
space. If the dependence of f on x;,z, is non-trivial we show that (depending
on the form of f) separation can occur for conformal Cartesian coordinates on any
space. If f = G(W) then for orthogonal coordinates we find that true functional
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separation, i.e. separation other than additive or multiplicative, occurs precisely for
Cartesian coordinates in the Euclidean and pseudo-Euclidean planes. (The sine-
Gordon equation provides an example of this separation.) For many of these cases
the separated solutions A, B are expressible in terms of elliptic functions. For non-
orthogonal coordinates and f = G(¥) true functional separation occurs precisely for
Cartesian coordinates in the pseudo-Euclidean plane and for a coordinate system on
the hyperboloid of one sheet, a pseudo-Riemannian space of constant curvature.

2. Functional separation for ¥,, — ¥ __ = f(¥,t,z)

For our first important example we look for solutions of the equation
Wy~ Wop = f(V, 1,2} 2.1

in the form ¥(t,2) = ¢(u), (u = A(t) + B(x)). We shall assume that ¢' # 0 and
that all functions are infinitely differentiable. Clearly, functional separation of (2.1)
is equivalent to additive separation of the modified equation

Up = Uy + N(u)( ~ uz) = M(u,1,7) 22)
N(w)=¢"1¢'  M(ut,2)= f(¢t,2)/¢'.

Thus, we look for solutions u of (2.2) such that u,, = 0.
A set of necessary and sufficient conditions for additive separation of 2 PDE was
worked out by Kalnins and Miller [4-6]. We give a brief review of this theory and

apply it to our example. Suppose we look for additively separable solutions of the
partial differential equation

//\

H(x",u,u Uipathyga-er) =0 1€ign (2.3)

in the n coordinates z*. (Here, u; = 8,.u, uy; = 8,.,.u, -+, and u;; = 0 for
i # 7.} We look for solutions of the form

n
u= ZS(")(xi).
=1
Introducing new notation, let
'IEU' ,-j+153xu-- j=12

let m,; be the largest integer £ such that 8, H = H, , #0 and let D; be the total
differentiation operator

'Di = 3.:." + ui,lau + ui.Zam,] + ek ui,m,+lau,'m‘ +oee
Then the equation D; H{z,u) = 0 implies
Uim, 41 = —D;H/H, i=1,2,...,n, (2.4)

where
‘Di = az' + ui,lau + u‘i,zau,,] +o uz',m.au, 1"
It follows that u satisfies the integrability conditions D;u; ,,.., = 0,j # i, or
Hu,,thu,,mj(Di D,-H) + Hul_m‘umj(DiH)(D'H)
=H, (D;H)D;H, )+H, (D;H)D:H

Conversely we have the result:

Uy,m, *y, sy ) (2'5)
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Theorem 1 [4-6]. If conditions (2.5) are satisfied identically (for ¢ # j and modulo
the requirement H = 0) in the dependent variables w.wu; ,, then the PDE H = 0
admits a 3., m; parameter family of separable solutions. Indeed, for every set of
m; + my+ -+ m, + 1 constants {v%, v]} subject to the condition H(z" v") =0
with H,, (2% %) # 0, there is a unique separable solution u of H(z,u) = O such

that u(x%) = oY, u,-,j(:co) = v, u,-,_,-(a:") = v?,j, 1gign, 1gjsm,.

If, for a particular coordinate system x;, equations (2.5) are satisfied identically
modulo H = 0 we say that these coordinates permit regular separation. If equations
(2.5) are not satisfied identically, separable solutions still may exist but will depend
on fewer than §.._, m; independent parameters. This is non-regular separation. We
shall restrict our attention to regular separation.

Now we return to our example (2.2). For ease of calculation we shall initially
limit ourselves to the case M = M(u), Le. f, = f, = 0. Differentiating (2.2) with
respect to ¢ we find

Uy = —N'uy (vl — u2) —2Nu,u,, + M'y,. (2.6)

For an additively separable solution we must have u,,,. = 0. Differentiating (2.6)
with respect to =z and using (2.2} to eliminate the terms in w,, and u_,, we obtain
the necessary condition

(w3u, — wWdu ) N" —2N'N) + u u,(M" - 2N'M) = 0.
This condition is satisfied identically if and only if the separation conditions
(i) N'"-2N'N=0 ({iy M"-2N'M =0 2.7

hold. By theorem 1, conditions (2.7) are necessary and sufficient for regular separation
of equation (2.2). (The corresponding computation for u,,. leads to exactly the
same conditions, as, by symmetry, it must.) Note that condition (i) admits the first
integral N’ = N2 4 ¢? for ¢ a constant, so we can compute N from an additional
integration. Moreover, if N is a solution of (i) then Af = N is a solution of (ii).
Setting M = N P in (ji) we thus obtain the first-order ordinary differential equation
P = ¢N~? for P, where £ is a constant.
The solutions are of four types:

) e#0, N'#£0
N =ctanw M = ktanw + k;[wtan w + 1] w=cu+b
e~44(%) = anw + secw

[ty s
f(e) = 50 T 3 In(tan a¢ + sec ap) | sin2a ¢ - Cos ¢

(i) c=0, N'#0

N=-1/(u+b)  M=cu+bd)i+c/(u+b)
$(u)=kin(u+b) ()= keet/* + keye 240k
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(ili) N=0, N=ic#0
M = cjute, P(u) = elcutk f(@) = ey In p+(feey—ke ) o
(ivy NN=0,N=0
M=cu+e du)=cu  f(¢)=ced+ce.
In each case we have set an additive constant equal to zero in the expression for
¢(u1’)"c.)r each of these cases the separated solutions u = A(t)+ B(x) can be obtained
by solving ordinary differential equations. Indeed the mechanism for separation is

a generalized differential Stickel form [6,7], a non-trivial extension of the classical
Stiickel form [8,9]. In case (ii) the basic separation equations are

(AY? = u? = aA? + BA + v + 2¢, A® (2.8a)

(B =l =aB?-8B+v-2¢,B*+¢, (2.85)
with two additional separation equations

A" = u, = A+ B/2 + 3¢, A* (2.8¢c)

B"=u_, = aB— (/2 3¢ B? (2.84)

obtained by differentiating equation (2.82) with respect to ¢ and (2.86) with respect
to =z and cancelling the common factors 24, 2B’. (Here for simplicity we have set
b = 0.) The constants «, 3,7, c, and ¢, are separation parameters. We observe that

(2.2) = (2.8¢) — (2.8d) — %(2.&;) + é(z.sz;)

so a solution u = A(t) + B(x) of (2.82), (2.8b) necessarily satisfies (2.2). Note
that for general values of o, 3,~, ¢;, ¢, the problem of finding functionally separable
solutions has been reduced to quadratures and inversion, ie. to the problem of
evaluating integrals of the form

t_/*‘ dA
" Js JoAZF BA+ 4+ 20, AT

and solving for A as a function of {. It is well known for these integrals that A, B are
elliptic functions [10, ch VII, section 5]. (The possible explicit solutions for the wave
equation in Cartesian coordinates ( f = 0) are given in [2, p 126].) Furthermore, for
fixed f the separated solution depends on four independent parameters, in agreement
with the prediction of theorem 1. We see that the Stickel matrix associated with this
separation is

AT A 1 24% ¢
B -B 1 -2B% 1
A L 0 342 0 @9)
B -1 0 -3B2 0
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(We make a brief digression to recall the meaning of Stickel matrices and Stickel
form [8, S]. We consider a classical example: orthogonal separation for the Hamilton-
Jacobi equation for a free particle on an n-dimensional Riemannian space

Zn:Hfzuf= E.

i=1

Here the metric, expressed in terms of the local orthogonal coordinates {z*}, is
n +
ds’ = Y H}(dz')2
i=1

Assume addijtive separation so that 9;u; = 8,8;u = 0 for i # j. We determine
conditions such that any solution of the separation equations

mn
u§+25,-j(:c").\f=0 i=1,...,n M=—E
i=1

is automatically a separable solution of the Hamilton-Jacobi equation. Here
Oy s;;(x*) = 0 for k # 4 and det(s;;} # 0 so that the separation equations are
ordinary differential equations. The constants A/ are called separation parameters.
We say that § = (s;;) is a Stéckel matrix in the sense that the ¢th row of S depends
only on the variable z’. Now it is not difficult to show that the Hamilton-Jacobi
equation can be recovered from the separation equations if and only if the metric
coefficients can be expressed in the form H;? = (S~1)“. If this is the case the
metric coefficients are said to be in Stickel form with respect to these coordinates.
Similar constructions work for second-order linear differential equations, such as the
Schridinger equation. For the generalized differential Stéickel form the construction
of the original PDE from the (nom-singular) Stickel matrix is analogous except that
now more than one row may depend on the variable z* and the elements of the
matrix may be functions of the dependent variables such as w;, in addition to the
explicit functions of the independent variables z* which is allowed for classical Stickel
matrices.)

Case (i) is similar. If we write u = A(t) + B(z) in place of cu + b we find the
basic separation equations

(AP = u? = 0P 4 B + e~ B4  (ck [2a) + (cky/2a)A  (2.10a)

(B =u? = —ae™ 8 4. 8 — ve¥8 — (ck,/24) B (2.10b)
with two additional separation equations

A" = u,, = iceB — ive~ T4 4 (ck,/da) (2.10¢)

B" = u,, = ice~ B —iye®B _ (ck,/4a) (2.10d)

obtained by differentiating equation (2.10a) with respect to £ and (2.10b) with respect
to z and cancelling the common factors 24/, 2B'. Cases (iii) and (iv) are even
simpler. For general values of «,3,7,¢;,c, the problem of finding functionally
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separable solutions has been reduced to quadratures and inversion, i.e. to the problem
of evaluating integrals of the form

. fA dA
P \/aezm. + 8+ .ye—ZiA + kA

and solving for A as a function of ¢. For many special cases A, B can be expressed
in terms of elliptic functions, but for general values of the parameters with o8k # 0
these functions have not been tabulated. (Note that for k, = 0 the type (i) equation
(2.1) is the sine~-Gordon equation [2, 11,12 (section 5.2), 13] and equations (2.10a, b)
can be integrated explicitly.)

It is easy to modify the derivation of the separation conditions for (2.2) in the
case where not both f,, f, vanish. The separation conditions (2.7) then become

() N"=2N'N=0  (2) My, -2N'M =0 (3 M,, =M, =M, =0.
@11)

If N' # 0 then conditions (2) and (3) imply that f, = f, = 0, which is contrary to
our assumption. It follows easily that only solutions of types (3) and (4) listed above
can occur in this case. The solutions given for these types are still valid except that
now ¢, = g{t} + h{z) where g and h are arbitrary functions.

Next we consider an example with very different behaviour: equation (2.1)
expressed in the non-orthogonal Cartesian coordinates s,y where 1 = s 4 y,
z = s —y. Then the equation becomes

¥, = F(¥,s,9)

and we seek solutions of the form ¥(s,y) = ¢(u), v = A(s) + B{y). This is
equivalent to additive separation of the modified equation

U Uy, = M(u,s, y) M(u’say) = F(¢,s, y)/‘bﬂ' (2.12)

(Here, we are assuming that F # 0. If F = O then the only regular separable
solution is ¢{u) = au + b.) We initially limit ourseives to the case M = M(u), ie.
F, = F, = (. Differentiating (2.12) we find

ug = M'(u,fuy) vy = M(u,/u,). (213)

Then the requirement u,,, = 0 together with (2.12) and (2.13) implies the necessary
and sufficient condition for regular separation

MM —(M'):=0. (2.14)

The solution is M(u) = ae¥*. The possible functions ¢(u) are the solutions of the
ordinary differential equation

¢’ = a~le ¥ F(¢).
The separation equations are

—ae"? 4 A’ =0 B —cefB =0
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and can be solved explicitly. Here ¢ is the separation parameter. For fixed M
the separable solutions of (2.11) have two independent parameters, as predicted by
theorem 1. (See [1, p 692] for the explicit solution of the sine-Gordon equation
W,, =sin ¥ by this method.)

If F depends on the variables s,y, the necessary and sufficient conditions for
separation are

M, M~ MZM + M, M~ MM, =0

(2.15)
M, M—-MM, =0  M,M~MM, =0

These conditions imply that M = P(u}Z(s,y) where
(In P)" = a P! (In2),, =—aZ

and ¢ is a constant. Thus F(¢,s,y) = G(¢)Z(s,y) and &(u) is obtained
by solving the ordinary differential equation ¢" = G(¢)/P(u). For a = 0
a change of variables of the form S(s),Y(y) reduces the problem to (2.14).
For @ # 0 the equation for Z is the Liouville equation with general solution
Z=—(2/a)8(s)Y'(y)/(S(s) + Y(y))* for arbitrary functions S, Y, [14, 15 p 60].
With an obvious change of variables, preserving the separation, we have Z(s,y) =
—(2/a)/(s+ y)*. Furthermore the equation for P has the general solution P(u) =
(af2k?) cosh? k(u + ) and the envelope solution P(u) = —(a/2)u?. For the
general solution we have u = £(2k) "' In |(ay~B)(vs+8)/(—vy+ 6)(as+ B)|—b.
For the envelope solution we find u = (ay—B36)(s+ y)/(vs+ 6)(—vy + 8). Here,
ab— B~ # 0. In each case for fixed M there are two independent parameters in the
expression for u

3. Functional separation for pseudo-Riemannian spaces

To generalize the first example of section 2 we search for solutions of the equation
Ayd(u) = f(d(u), 2y, 2;) @1

such that uw = A(x,)) + B(z,) where z,,z, is an orthogonal coordinate system in

a pseudo-Riemannian space, ie. with signature (+1,-1). Here A, is the Laplace-
Beltrami operator [16]

1 H H 1
&= [al(H231)+az(Hlaz)] H25‘u+ Fp0nt MOt hay B)

where

1 H, 1 H,
wemmt(w) et () 63

and the metric for the pseudo-Riemannian space is given (in terms of the local
coordinates z,,z;) by

ds? = Hi(z,,z,) dad + H (x|, ;) da3.
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It follows that we must determine additively separable solutions for the equation

2
1 uj

2
Hz“u + 03 uzz + hyuy + houy + N(u) (H"’ Hz) = M(u,z,z,) (3.4)

N(u) = ¢"/¢” M(us 371;“"2) = f(¢,w1,$2)/¢’.

According to theorem 1 we must compute u,,, and u,, in terms of lower-order
derivatives and then use (3.4) and the requirement uy;;, = 0 to obtain a polynomial
identity in u,u,, Uz, U This computation is tedious but straightforward.

Initially, we require t.hat N # 0. Equating the coefficients of the term wu,uy
we find the condition (H2 — H;2)8(ln H2/HZ)N = 0. Due to the signature
requirement on the metric the ﬁrst factor cannot vanish. Thus &,;(In zf /Hz%) = 0
which implies £, = 0. By symmetry it follows that h, = 0 also. Thus H{/Hj =
a constant and negative because of the signature requirement. By sultabie rescalmg
of the coordinates we can obtain H} = —H2 = p(z;, ;).

Now, multiplying both sides of (3 4) by p(x,,z,) and making the identifications
¢ =1t ;=g M(“a‘”h"«’z) = p(zy, 23) f(¢, 7y, %,) /¢ we obtain equation (2.2)
again. Thus the analysis of this example in section 2 completely resolves our more
general problem in the case N # 0. Indeed, if N'f % O then pf = G(¢), the
coordinates are conformal to Cartesian coordinates in the pseudo-Euclidean plane
and the solutions are of types (1} and (2) given in section 2. If f = 0 the coordinates
are again conformally Cartesian and the possibilities for N and ¢ correspond to types
(1) and (2) given in section 2.

If N/ = 0 but Nf % O then either pf = G(¢) and we have the type (3
solutions of section 2, or pf = G(¢)[g(z,) + h(z,) + A] where g + h is non-
constant. For this latter possibility we must have ¢, = 0 in the type (3) solutions;
these solutions correspond to multiplicative separation of the Schrédinger equation
AW — V¥ = AT where V = [g(x,) + h(x,)]/p(2y, 2,) is a separable potential.
The general theory for such solutions is discussed in [17, ch 1], for example.

If Nl = f=0but N 3 0 then we must have ¢, = ¢, = 0 in the type (3)
solutions. These solutions correspond to multiplicative separation of the Laplace
equation A,¥ = 0.

Now suppose that N = 0. Then by equating the coefficients of the term u,, in
the separation conditions we obtain the requirement

8y In( HE/ HE) = 0. (3.5)

This means that by replacing our coordinates with suitably renormalized coordinates
Xi(=z1), X5(x,), if necessary, (this preserves functional separation) we can obtain the
metric coefficients in the form Hi(z(,z,} = —H¥(z|,%;) = p(z;, x,), with respect
to the new coordinates z,z,. Now, multiplying both sides of (3.4) by the factor
p(zy,x,) and noticing that iy = h, = 0, we obtain 22) with t = zj,x = a,, N =0
and M(u,t,a) = p(t,2)f(,t,z) /¢ I M # 0 it follows from (2.11) and the type
(4) solutions of section 2 that either pf = G(&), (M’ # 0), or pf = g(t}+h(z)+ A
where g + h is variable. These latter solutions correspond to additive separation of
the equation A,V — V¥ = X where V = [g(x,) + h(z,)]/p(z;,z;) is a separable
potential. The general theory for such solutions in n variables is treated in [6, 7).
If N = M = 0 we obtain the special case of the type (4) solutions of section
2 with f = 0. These solutions correspond to additive separation of the Laplace
equation A,¥ =0,
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Theorem 2. The equation

Agd(u) = f($(u), 21, 2,)
where A, is the Laplace-Beltrami operator on a pseudo-Riemannian space with
signature (+1,—1) admits (regular) solutions such that u = A(z,) + B(z,) in a
local orthogonal coordinate system z;, @, for some function ¢ with ¢’ # O under the
following circumstances. (Here, N(u) = ¢"/¢', N' = N2 4+ ¢ for ¢ a constant,
M(u) = f(¢)/¢' and ds? is the metric on the pseudo-Riemannian space.) In all

cases the coordinates are conformally Cartesian: ds? = p(wy, z,)(dz? — dz2).
() Forc#0, N'#0

N =ctanw M =kitanw + ky[wtan w + 1] w=cu+b
e~#(%) = tap  + sec w

ple, ) f(d) = [Ckl + = cky ]n(tan ad + sec a¢>)] sin 2a¢p — -E—cos ad.

@) Fore=0, N'#0

. _—1 — 2, _©
N_u-{-b M =¢(u+b)*+ —— Py

¢(u} = kln(u + b) p(zy, 22) f(P) = kcle"*/k + kcze"zwk.

B FrN=ic#0, M'#0
M=cute  du)=e"**  plz,2;)f(¢) = ool + (ice, — kcy) .
(4 For N=ic#0, M'=0
M = ¢ ¢(u) = eienth P2y, 23) F(9) = iecydla(z)) + h(z,y) + A icey)].
Stéckel form coordinates provide multiplicative separation of the Schrodinger
equation A,¥ — V¥ = AV on the pseudo-Riemannian space where V =
ice;[g(zy) + h(mz)]/p(ml,mz) is a separable potential.
S)YFor N=0, M'#0

M=cu+g ¢(u) = cu plxy, 2;) f(@) = ce19 + cc,.
@ FrN=Mz=0
M=uc, $(u) = cu plxy,22) f(@) = ecrlg(er) + hlmy) + M ecy).
(Here, g + h is non-constant.) Stickel form coordinates provide additive separation

of the equation A,¥ — V¥ = X on the psendo-Riemannian space where V =
ceylg(@y) + h(xy)]/ p(xy, ;) is a separable potential,
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The type (4), (6) multiplicative and additive separations have been studied in detail
for several manifolds [18-21]. It is known that, for pseudo-Euclidean space, separation
is possible in ten coordinate systems whereas for the single-sheeted hyperboloid it is
possible in nine coordinate systems.

Next we search for solutions of the equation

By9(w) = f(P(u}, 71, 75) (3.6)

such that u = A(x,) + B(z,) where x,, x, is a non-orthogonal coordinate system in
a pseudo-Riemannian space. Here A, is the Laplace-Beltrami operator

E 8; (9" +/98;) g =det(g;;) > gg; =6
i

z; 1
where the metric for the pseudo-Riemannian space is given (in terms of the local
coordinates x,, x,) by
ds? = gy, (%), zo) def + 291221, 22) dzy Ay + gy, 75) da 12 = G2

The non-orthogonality requirement is that g2 # 0,
It follows that we must determine (additively) regular separable solutions for the
eguation

g uyy + g% uy + hyup 4 houy + N(u)(g'ud + 207w up + g%l
= M(u,zy, ;) (3.7)
N(u) = ¢" /¢ M(u,ml,zz)=f(¢,ml,m2)/¢’

where here

(6 /3) j=1,2.

Mm

=1

The case N =0, ie. q&(u) = u, is degenerate in this problem so we require N # Q.
The analysis is similar to the proof of theorem 2, According to theorem 1 we must
compute uy;; and uy, in terms of lower-order derivatives and then use (3.4} and
the requirement u;;, = 0 to obtain a polynomial identity in u,u;,u,,uy. This
computation is tedious but straightforward. First we assume g!'g? # 0. Then
equating coefficients of 3, in the identity we find N = 0, a contradiction. If we
assume g'' # 0, ¢# = 0 and equate coefficients of u u,u, we find again that
N = 0, another contradiction. By symmetry, g2 # 0, g!! = 0 is also impossible.
Thus the only remaining possibility is g!! = g2 = 0. Setting g2 = p~ Yz, ;) we
can write (3.7) in the simple form

Uty = (f(‘ﬁ’,31,1’2)/(¢”))P(3n32)- (3.8)
This is just equation (2.12) with the identifications =, = s, z, = y, M(u,s,y) =
p(s,y) f(¢,s,y)/¢". It follows from the analysis of (2.12) that there are two types
of sojution. For the first type we can assume pf = G(¢) and the solutions are given
following (2.14). (Here the coordinates are conformal to Cartesian coordinates.)
For the second type we can assume pf = G(¢)(s + y)~? and the solutions are
given following (2.15). (Here the coordinates are conformal to coordinates on the
one-sheeted hyperboloid, a space of constant curvature [18-20]. Explicitly, if 5% =
dsdy/(s + y)? then setting z) = (sy +1)/2(s + y)22 = (8= y)f2s +v), 23 =
(sy—1)/2(s + y) we find 27 + 2 ~ 22 = 1 and d$? = —dz? — dzi + dzl)
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Theorem 3. The equation

A,d(u) = f(o(u), zy,z,)

admits (regular) solutions such that u = A(z,) + B(x,) and ¢” # 0 in a local
non-orthogonal coordinate system z,,z, on a pseudo-Riemannian space in precisely
two cases:

(1) the coordinates are conformal to Cartesian coordinates in the pseudo-
Euclidean plane ds? = p(z,,z,)dz; dz,, pf = G(¢);

(2) the coordinates ds? = p(z|, z,)(dzy dzy /(x4 2,)2), pf = G(@)/(z+ ;)2
are conformal to coordinates d3% = (dax; dz, /(z; + 2,)?) on the hyperboloid of one
sheet.

4. Functional separation for Riemannian spaces

Now we seek solutions of the equation
Ayd(u) = f(#(u), 21, 2,) .1

such that u = A(x,) + B(=z,) where z,z, is an orthogonal coordinate system in a
Riemannian space, ie. with signature (+1,41). Again A, is the Laplace-Beltrami
operator (3.2). It follows that we must determine additively separable solutions for
the equation (3.4). The computations here are almost identical with those used in
the proof of theorem 2. The only difference is that here we require that H? and H2
are positive, whereas in section 3 H} H? was negative.

The result is as follows.

Theorem 4. The equation
A2¢(u) = f(d)(u)awl! 332)

where A, is the Laplace-Beltrami operator on a Riemannian space admits (reguiar)
solutions such that u = A(x;) ++ B(z,) in a local orthogonal coordinate system
zy, ¢, for some function ¢ with ¢’ # 0 under the following circumstances. (Here,
N(u) = ¢"/¢', N' = N2 4 ¢ for c a constant, M(u) = f(é,z,,2,)/¢' and ds?
is the metric on the Riemannian space.) In all cases the coordinates are conformally
Cartesian: ds? = p(z;, 2,)(dz? + dx).

() Fore# 0, N'#0

N =ctanw M = kjtan w + kyfwtanw + 1] w=cu+b

e~ied(%) = tan w + sec w

Ckz

a In{tan ag 4 sec aé)] sinZ2ad — %{2 COos ad.

lene) f(6) = |52+

2)Fore=0, N'#0

__—1 = 2 )
N_u-!-b M_cl(u+b)+u+b

u)=kin(utd)  plen ) f(8) = ket + keye /b,
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(B)For N =ic# 0, M'#0
M=cqu+te $(u) = etk pley.x2) f(d) = ey pln + (ice; — key)o.

@HFrN=ic£0, M' =0
M=c u) = elevtk plxy,2,) f(@) = ice,dlg(xy) + h(zy) + Aice,).
Stickel form coordinates provide multiplicative separation of the Schrddinger
equation A,¥ — V¥ = A¥ on the Riemannian space where V = icey[g(x)) +
h{x,)]/p(x,, z;) is 2 separable potential.

G)For N=0, M'#0

M=cute  ¢u)=cu  p(z,,2,)f(9) = ec;¢ + cc,.

G)For N=M =0
M=c ¢(u) = cu p(zy, 22} f(8) = cep[g(zy) + h(z;) + Afcey].
(Here, g + h is non-constant.) Stiickel form coordinates provide additive separation

of the equation A,¥ — V¥ = A on the Riemannian space where 1/ = cey[g(x,) +
h{z;)}/p(z;, x,) is 2 separable potential.

In case (1) the basic separation equations are
(AN? = ul = ae® 4 + B + ye B4  (eky/2a) + (cky/2a) A
- (B'Y = ~ul = —ce” 2B 4 3 ye?B — (ck,/20)B
with two additional separation equations
A" = uy; = jae?? —ine B4 4 ck, fda

— B" = —uy = ice™ %8 _ jye?iBlekayg
In case (3) the basic separation equations are

(A = ul= A4 BA+ v +2¢, A

~ (B =l =aB’~fB+y-2¢B +¢,
with the two additional separation equations

Al = u =aAd+ 8/2+4 3C1A2

- B = —uy =aB - (3/2-3¢, B2

As an example of the possible functionally separable explicit solutions of the
Laplace equation v, . + u,,,, = 0 via this method see [2, p 117].

The type (4), (6) multiplicative and additive separations have been studied in
detail for constant curvature manifolds [18-21]. It is known that, for Euclidean space,
separation is possible in four coordinate systems whereas for the double-sheeted
hyperboloid it is possible in nine coordinate systems and for the sphere it is possible
in two coordinate systems.

From the proof of theorem 3 we see that functional separation in non-orthogonal
variables occurs only if g'' = g2 = 0. This is not possible for coordinates in a
Riemannian space.

Theorem 5. The equation
Az(u) = f($(u), 1, 77)

in a local non-orthogonal coordinate system z;, z, on a Riemannian space admits no
regular separable solutions u = A(z,) 4+ B(xz;) with ¢" # 0.
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